Ion concentration dynamics as a mechanism for neuronal bursting.
نویسندگان
چکیده
We describe a simple conductance-based model neuron that includes intra- and extracellular ion concentration dynamics and show that this model exhibits periodic bursting. The bursting arises as the fast-spiking behavior of the neuron is modulated by the slow oscillatory behavior in the ion concentration variables and vice versa. By separating these time scales and studying the bifurcation structure of the neuron, we catalog several qualitatively different bursting profiles that are strikingly similar to those seen in experimental preparations. Our work suggests that ion concentration dynamics may play an important role in modulating neuronal excitability in real biological systems.
منابع مشابه
C:/Documents and Settings/Ernie/My Documents/Cruncher/Work/JBP paper/Author-generated accepted version/JBP_Bursting_Author-generated_accepted.dvi
We describe a simple conductance-based model neuron that includes intraand extra-cellular ion concentration dynamics and show that this model exhibits periodic bursting. The bursting arises as the fast spiking behavior of the neuron is modulated by the slow oscillatory behavior in the ion concentration variables, and vice versa. By separating these time scales and studying the bifurcation struc...
متن کاملThe role of extracellular potassium dynamics in the different stages of ictal bursting and spreading depression: a computational study.
Experimental evidences point out the participation of nonsynaptic mechanisms (e.g., fluctuations in extracellular ions) in epileptiform bursting and spreading depression (SD). During these abnormal oscillatory patterns, it is observed an increase of extracellular potassium concentration [K(+)](o) and a decrease of extracellular calcium concentration [Ca(2+)](o) which raises the neuronal excitab...
متن کاملControlling Seizure-Like Events by Perturbing Ion Concentration Dynamics with Periodic Stimulation
We investigate the effects of adding periodic stimulation to a generic, conductance-based neuron model that includes ion concentration dynamics of sodium and potassium. Under conditions of high extracellular potassium, the model exhibits repeating, spontaneous, seizure-like bursting events associated with slow modulation of the ion concentrations local to the neuron. We show that for a range of...
متن کاملExtracellular Potassium Dynamics and Epileptogenesis
Extracellular ion concentrations change as a function of neuronal activity and also represent important factors influencing the dynamic state of a population of neurons. In particular, relatively small changes in extracellular potassium concentration ( K+ o) mediate substantial changes in neuronal excitability and intrinsic firing patterns. While experimental approaches are limited in their abi...
متن کاملCalcium involvement in regulation of neuronal bursting in disinhibited neuronal networks: insights from calcium studies in a spherical cell model.
Cytosolic calcium is involved in the regulation of many intracellular processes. Intracellular calcium may therefore potentially affect the behavior of both single neurons and synaptically connected neuronal assemblies. In computer model studies, we investigated calcium dynamics in spherical neurons during periods of recurrent neuronal bursting that were simulated in a disinhibited neuronal net...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biological physics
دوره 37 3 شماره
صفحات -
تاریخ انتشار 2011